Applied Multivariate Statistical Analysis

June 21, 2013

8-9. (A test that all variables are independent.)
(a) Consider that the normal theory likelihood ratio test of $H_{0}: \Sigma$ is the diagonal matrix

$$
\left[\begin{array}{cccc}
\sigma_{11} & 0 & \cdots & 0 \\
0 & \sigma_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{p p}
\end{array}\right], \quad \sigma_{i i}>0
$$

Show that the test is as follows: Reject H_{0} if

$$
\Lambda=\frac{|\mathbf{S}|^{n / 2}}{\prod_{i=1}^{p} s_{i i}^{n / 2}}=|\mathbf{R}|^{n / 2}<c
$$

For a large sample size, $-2 \ln \Lambda$ is approximately $\chi_{p(p-1) / 2}^{2}$. Bartlett[3] suggests that the test statistic $-2[1-(2 p+11) / 6 n] \ln \Lambda$ be used in place of $-2 \ln \Lambda$. This results in an improved chi-square approximation. The large sample α critical point is $\chi_{p(p-1) / 2}^{2}(\alpha)$. Note that testing $\boldsymbol{\Sigma}=\boldsymbol{\Sigma}_{\boldsymbol{0}}$ is the same as testing $\boldsymbol{\rho}=\boldsymbol{I}$.
(b) Show that the likelihood ratio test of $H_{0}: \boldsymbol{\Sigma}=\boldsymbol{\sigma}^{\mathbf{2}} \mathbf{I}$ rejects H_{0} if

$$
\Lambda=\frac{|\mathbf{S}|^{n / 2}}{(\operatorname{tr}(\mathbf{S}) / p)^{n p / 2}}=\left[\frac{\prod_{i=1}^{p} \hat{\lambda}_{i}}{\left(\frac{1}{p} \sum_{i=1}^{p} \hat{\lambda}_{i}\right)^{p}}\right]^{n / 2}=\left[\frac{\text { geometric mean } \hat{\lambda}_{i}}{\operatorname{arithmetic} \text { mean } \hat{\lambda}_{i}}\right]^{n p / 2}<c
$$

For a large sample size, Bartlett[3] suggests that

$$
-2\left[1-\left(2 p^{2}+p+2\right) / 6 p n\right] \ln \Lambda
$$

is approximately $\chi_{(p+2)(p-1) / 2}^{2}$. Thus, the large sample α critical point is $\chi_{(p+2)(p-1) / 2}^{2}(\alpha)$. This test is called a sphericity test, because the constant density contours are spheres where $\boldsymbol{\Sigma}=\boldsymbol{\sigma}^{2} \mathbf{I}$.

Proof 8-9(a): The key is to find $\max _{\boldsymbol{\mu}} L\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{\mathbf{0}}\right)$
By $5-12$:

$$
\text { likelihood ratio }=\Lambda=\frac{\max _{\boldsymbol{\mu}} L\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{\mathbf{0}}\right)}{\max _{\boldsymbol{\mu}, \boldsymbol{\Sigma}} L(\boldsymbol{\mu}, \boldsymbol{\Sigma})}
$$

Since

$$
\begin{align*}
L\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{\mathbf{0}}\right) & =\frac{1}{(2 \pi)^{n p / 2} \cdot\left|\boldsymbol{\Sigma}_{\mathbf{0}}\right|^{n / 2}} \cdot \exp \left(-\sum_{j=1}^{n}\left(x_{j}-\boldsymbol{\mu}\right)^{\prime} \cdot \boldsymbol{\Sigma}_{\mathbf{0}}^{-\mathbf{1}} \cdot\left(x_{j}-\boldsymbol{\mu}\right) / 2\right) \tag{by4-11}\\
& =\frac{1}{(2 \pi)^{n p / 2} \prod_{i=1}^{p} \sigma_{i i}^{n / 2}} \cdot \exp \left(-\sum_{j=1}^{n} \sum_{i=1}^{p}\left(x_{j i}-\mu_{i}\right)^{2} / \sigma_{i i} \cdot 2\right) \\
& =\prod_{i=1}^{p}\left(\frac{1}{(2 \pi)^{n / 2} \sigma_{i i}^{n / 2}} \cdot \exp \left(-\sum_{j=1}^{n}\left(x_{j i}-\mu_{i}\right)^{2} / 2 \sigma_{i i}\right)\right)
\end{align*}
$$

Hence

$$
\begin{equation*}
\max _{\boldsymbol{\mu}} L\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{\mathbf{0}}\right)=\prod_{i=1}^{p}\left(\frac{1}{(2 \pi)^{n / 2} \sigma_{i i}^{n / 2}} \cdot \exp \left(-\sum_{j=1}^{n}\left(x_{j i}-\mu_{i}\right)^{2} / 2 \sigma_{i i}\right)\right) \tag{1}
\end{equation*}
$$

Hence maximum estimators are

$$
\begin{equation*}
\hat{\mu}_{i}=\frac{1}{n} \sum_{j=1}^{n} x_{j i}, \quad \hat{\sigma_{i i}}=\frac{1}{n} \sum_{j=1}^{n}\left(x_{j i}-\bar{x}_{i}\right)^{2} \tag{result4.11}
\end{equation*}
$$

Hence

$$
\begin{aligned}
\max _{\boldsymbol{\mu}} L\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{\mathbf{0}}\right) & =\prod_{i=1}^{p}(2 \pi)^{-n / 2} \cdot{\hat{\sigma_{i i}}}^{-n / 2} \cdot \exp (-n / 2) \\
& =\prod_{i=1}^{p}(2 \pi)^{-n / 2} \cdot s_{i i}^{-n / 2} \cdot\left(\frac{n-1}{n}\right)^{-n / 2} \cdot \exp (-n / 2)
\end{aligned}
$$

From 5-10:

$$
\begin{aligned}
\max _{\boldsymbol{\mu}, \boldsymbol{\Sigma}} & =\frac{1}{(2 \pi)^{n p / 2} \cdot|\hat{\boldsymbol{\Sigma}}|^{n / 2}} \cdot e^{-n p / 2} \\
& =(2 \pi)^{-n p / 2} \cdot\left|\frac{n-1}{n} \cdot S\right|^{-n / 2} \cdot e^{-n p / 2}
\end{aligned}
$$

We know

$$
\begin{align*}
\Lambda & =\frac{\max _{\boldsymbol{\mu}} L\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{\mathbf{0}}\right)}{\max _{\boldsymbol{\mu}, \boldsymbol{\Sigma}} L(\boldsymbol{\mu}, \boldsymbol{\Sigma})} \\
& =\frac{\prod_{i=1}^{p}(2 \pi)^{-n / 2} \cdot\left(\frac{n-1}{n} s_{i i}\right)^{-n / 2} \cdot \exp (-n / 2)}{(2 \pi)^{-n p / 2}\left|\frac{n-1}{n} S\right|^{-n / 2} \cdot \exp (-n p / 2)} \\
& =\frac{|\mathbf{S}|^{n / 2}}{\prod_{i=1}^{p} s_{i i}^{n / 2}} \\
& =|\mathbf{R}|^{n / 2} \tag{8-28}
\end{align*}
$$

8-9(b): From 8-9(a) formula (1)

$$
\max _{\boldsymbol{\mu}} L\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{\mathbf{0}}\right)=\prod_{i=1}^{p}(2 \pi)^{-n / 2} \cdot \sigma_{i i}^{-n / 2} \cdot \exp \left(-\sum_{j=1}^{n}\left(x_{j i}-\mu_{i}\right)^{2} / 2 \sigma_{i i}\right)
$$

Now under H_{0}, all the $\sigma_{i i}=\sigma^{2}$
Hence

$$
\max _{\boldsymbol{\mu}} L\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{\mathbf{0}}\right)=(2 \pi)^{-n p / 2} \cdot\left(\sigma^{2}\right)^{-n p / 2} \cdot \exp \left(-\sum_{j=1}^{n} \sum_{i=1}^{p}\left(x_{j i}-\mu_{i}\right)^{2} / 2 \sigma^{2}\right)
$$

To find the maximum estimators $\hat{\mu_{i}} \& \hat{\sigma}^{2}$ take derivatives with respect to $\mu_{i} \& \sigma^{2}$ respectively and set them to 0 to find:

$$
\begin{aligned}
\hat{\mu_{i}} & =\frac{1}{n} \sum_{j=1}^{n} x_{j i} \\
\hat{\sigma}^{2} & =\sum_{j=1}^{n} \sum_{i=1}^{p}\left(x_{j i}-\bar{x}_{i}\right)^{2} / n p \\
& =\frac{n-1}{n} \operatorname{tr}(\mathbf{S}) / p
\end{aligned}
$$

Hence:

$$
\begin{aligned}
\Lambda & =\frac{\max _{\boldsymbol{\mu}} L\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{\mathbf{0}}\right)}{\max _{\boldsymbol{\mu}, \boldsymbol{\Sigma}} L(\boldsymbol{\mu}, \boldsymbol{\Sigma})} \\
& =\frac{(2 \pi)^{-n p / 2}\left(\hat{\sigma}^{2}\right)^{-n p / 2} \cdot \exp (-n p / 2)}{(2 \pi)^{-n p / 2} \cdot|\hat{\boldsymbol{\Sigma}}|^{-n / 2} \cdot \exp (-n p / 2)} \\
& =\frac{\left|\hat{\boldsymbol{\Sigma}}^{n / 2}\right|}{\left(\hat{\boldsymbol{\sigma}}^{2}\right)^{n p / 2}}=\frac{\left|\frac{n-1}{n} \cdot \mathbf{S}\right|^{n / 2}}{\left(\frac{n-1}{n} \operatorname{tr}(\mathbf{S}) / p\right)^{n p / 2}} \\
& =\frac{|\mathbf{S}|^{n / 2}}{(\operatorname{tr}(\mathbf{S}) / p)^{n p / 2}}=\left[\frac{\prod \hat{\lambda_{i}}}{\left(\frac{1}{p} \sum \hat{\lambda_{i}}\right)^{p}}\right]^{n / 2}=\left(\frac{\text { geo mean } \hat{\lambda_{i}}}{\text { ari mean } \hat{\lambda_{i}}}\right)^{n p / 2}
\end{aligned}
$$

9-5. Let \mathbf{S} be a matrix with eigenvalue-eigenvector pairs $\left(\lambda_{1}, \mathbf{e}_{1}\right),\left(\lambda_{2}, \mathbf{e}_{2}\right), \ldots,\left(\lambda_{p}, \mathbf{e}_{p}\right)$, where $\lambda_{1} \geq$ $\lambda_{2} \geq \ldots \geq \lambda_{p}$. Let $m<p$ and define

$$
\mathbf{L}=\left\{l_{i j}\right\}=\left[\sqrt{\lambda_{1} \mathbf{e}_{1}}\left|\sqrt{\lambda_{2} \mathbf{e}_{2}}\right| \ldots \mid \sqrt{\lambda_{m} \mathbf{e}_{m}}\right]
$$

and

$$
\boldsymbol{\Psi}=\left(\begin{array}{cccc}
\psi_{1} & 0 & \ldots & 0 \\
0 & \psi_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \psi_{p}
\end{array}\right) \text { with } \psi_{i}=s_{i i}-\sum_{j=1}^{m} l_{i j}^{2}
$$

Prove the inequality

$$
\text { Sum of squared entries of }\left(\mathbf{S}-\left(\mathbf{L L}^{\prime}+\mathbf{\Psi}\right)\right) \leq \lambda_{m+1}^{2}+\cdots+\lambda_{p}^{2}
$$

Proof: By definition of ψ_{i}, we know that the diagonal of $\left(\mathbf{S}-\left(\mathbf{L L}^{\prime}+\boldsymbol{\Psi}\right)\right)$ are all zeroes. Since $\left(\mathbf{S}-\left(\mathbf{L} \mathbf{L}^{\prime}+\mathbf{\Psi}\right)\right)$) and $\left(\mathbf{S}-\mathbf{L} \mathbf{L}^{\prime}\right)$ have the same elements except on the diagonal, we know that
(Sum of squared entries of $\left.\left(\mathbf{S}-\left(\mathbf{L} \mathbf{L}^{\prime}+\boldsymbol{\Psi}\right)\right)\right) \leq$ Sum of squared entries of $\left(\mathbf{S}-\mathbf{L} \mathbf{L}^{\prime}\right)$
Since $\mathbf{S}=\lambda_{1} \mathbf{e}_{1} \mathbf{e}_{1}^{\prime}+\cdots+\lambda_{p} \mathbf{e}_{p} \mathbf{e}_{p}^{\prime}$ and $\mathbf{L L}^{\prime}=\lambda_{1} \mathbf{e}_{1} \mathbf{e}_{1}^{\prime}+\cdots+\lambda_{m} \mathbf{e}_{m} \mathbf{e}_{m}^{\prime}, \mathbf{S}-\mathbf{L} \mathbf{L}^{\prime}=\lambda_{m+1} \mathbf{e}_{m+1} \mathbf{e}_{m+1}^{\prime}+$ $\cdots+\lambda_{p} \mathbf{e}_{p} \mathbf{e}_{p}^{\prime}$. Writing it in matrix form, this is saying $\mathbf{S}-\mathbf{L L} \mathbf{L}^{\prime}=\mathbf{P}_{2} \boldsymbol{\Lambda}_{2} \mathbf{P}_{2}^{\prime}$ where $\mathbf{P}_{2}=\left[\mathbf{e}_{m+1}|\cdots| \mathbf{e}_{p}\right]$ and $\boldsymbol{\Lambda}_{2}=\operatorname{Diag}\left(\lambda_{m+1}, \cdots, \lambda_{p}\right)$. Now

$$
\begin{aligned}
& \left(\text { Sum of squared entries of } \mathbf{S}-\mathbf{L} \mathbf{L}^{\prime}\right) \\
= & \operatorname{tr}\left(\left(\mathbf{S}-\mathbf{L} \mathbf{L}^{\prime}\right)\left(\mathbf{S}-\mathbf{L} \mathbf{L}^{\prime}\right)^{\prime}\right) \\
= & \operatorname{tr}\left(\left(\mathbf{P}_{2} \boldsymbol{\Lambda}_{2} \mathbf{P}_{2}^{\prime}\right)\left(\mathbf{P}_{2} \boldsymbol{\Lambda}_{2} \mathbf{P}_{2}^{\prime}\right)^{\prime}\right) \\
= & \operatorname{tr}\left(\mathbf{P}_{2} \boldsymbol{\Lambda}_{2} \boldsymbol{\Lambda}_{2} \mathbf{P}_{2}^{\prime}\right) \\
= & \operatorname{tr}\left(\boldsymbol{\Lambda}_{2} \boldsymbol{\Lambda}_{2}\right) \\
= & \lambda_{m+1}^{2}+\cdots+\lambda_{p}^{2} .
\end{aligned}\left(\mathbf{P}_{2}^{\prime} \mathbf{P}_{2}^{\prime}=\mathbf{I}\right)
$$

and this completes the proof.

