Applied Multivariate Statistical Analysis

June 21, 2013

8-9. (A test that all variables are independent.)

(a) Consider that the normal theory likelihood ratio test of H_0 : Σ is the diagonal matrix

$$\begin{bmatrix} \sigma_{11} & 0 & \cdots & 0 \\ 0 & \sigma_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{pp} \end{bmatrix}, \quad \sigma_{ii} > 0$$

Show that the test is as follows: Reject H_0 if

$$\Lambda = \frac{|\mathbf{S}|^{n/2}}{\prod_{i=1}^{p} s_{ii}^{n/2}} = |\mathbf{R}|^{n/2} < c$$

For a large sample size, $-2 \ln \Lambda$ is approximately $\chi^2_{p(p-1)/2}$. Bartlett[3] suggests that the test statistic $-2[1 - (2p + 11)/6n] \ln \Lambda$ be used in place of $-2 \ln \Lambda$. This results in an improved chi-square approximation. The large sample α critical point is $\chi^2_{p(p-1)/2}(\alpha)$. Note that testing $\Sigma = \Sigma_0$ is the same as testing $\rho = I$.

(b) Show that the likelihood ratio test of H_0 : $\Sigma = \sigma^2 \mathbf{I}$ rejects H_0 if

$$\Lambda = \frac{|\mathbf{S}|^{n/2}}{(\operatorname{tr}(\mathbf{S})/p)^{np/2}} = \left[\frac{\prod_{i=1}^{p} \hat{\lambda}_{i}}{\left(\frac{1}{p} \sum_{i=1}^{p} \hat{\lambda}_{i}\right)^{p}}\right]^{n/2} = \left[\frac{\operatorname{geometric mean } \hat{\lambda}_{i}}{\operatorname{arithmetic mean } \hat{\lambda}_{i}}\right]^{np/2} < c$$

For a large sample size, Bartlett[3] suggests that

$$-2[1-(2p^2+p+2)/6pn]\ln\Lambda$$

is approximately $\chi^2_{(p+2)(p-1)/2}$. Thus, the large sample α critical point is $\chi^2_{(p+2)(p-1)/2}(\alpha)$. This test is called a *sphericity test*, because the constant density contours are spheres where $\Sigma = \sigma^2 \mathbf{I}$.

Proof 8-9(a): The key is to find $\max_{\mu} L(\mu, \Sigma_0)$

By 5-12:

likelihood ratio =
$$\Lambda = \frac{\max_{\mu} L(\mu, \Sigma_0)}{\max_{\mu, \Sigma} L(\mu, \Sigma)}$$

Since

$$L(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{\mathbf{0}}) = \frac{1}{(2\pi)^{np/2} \cdot |\boldsymbol{\Sigma}_{\mathbf{0}}|^{n/2}} \cdot \exp\left(-\sum_{j=1}^{n} (x_j - \boldsymbol{\mu})' \cdot \boldsymbol{\Sigma}_{\mathbf{0}}^{-1} \cdot (x_j - \boldsymbol{\mu}) \middle/ 2\right)$$
 (by 4-11)

$$= \frac{1}{(2\pi)^{np/2}} \prod_{i=1}^{p} \sigma_{ii}^{n/2}} \cdot \exp\left(-\sum_{j=1}^{n} \sum_{i=1}^{p} (x_{ji} - \mu_{i})^{2} / \sigma_{ii} \cdot 2\right)$$
(plug in Σ_{0})
$$= \prod_{i=1}^{p} \left(\frac{1}{(2\pi)^{n/2} \sigma_{ii}^{n/2}} \cdot \exp\left(-\sum_{j=1}^{n} (x_{ji} - \mu_{i})^{2} / 2\sigma_{ii}\right)\right)$$

Hence

$$\max_{\boldsymbol{\mu}} L(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{\mathbf{0}}) = \prod_{i=1}^{p} \left(\frac{1}{(2\pi)^{n/2} \sigma_{ii}^{n/2}} \cdot \exp\left(-\sum_{j=1}^{n} (x_{ji} - \mu_i)^2 \middle/ 2\sigma_{ii} \right) \right)$$
(1)

Hence maximum estimators are

$$\hat{\mu_i} = \frac{1}{n} \sum_{j=1}^n x_{ji}, \quad \hat{\sigma_{ii}} = \frac{1}{n} \sum_{j=1}^n (x_{ji} - \bar{x_i})^2 \quad (\text{result 4.11})$$

Hence

$$\max_{\mu} L(\mu, \Sigma_0) = \prod_{i=1}^p (2\pi)^{-n/2} \cdot \hat{\sigma_{ii}}^{-n/2} \cdot \exp(-n/2)$$
$$= \prod_{i=1}^p (2\pi)^{-n/2} \cdot s_{ii}^{-n/2} \cdot \left(\frac{n-1}{n}\right)^{-n/2} \cdot \exp(-n/2)$$

From 5-10:

$$\max_{\mu, \Sigma} = \frac{1}{(2\pi)^{np/2} \cdot |\hat{\Sigma}|^{n/2}} \cdot e^{-np/2}$$
$$= (2\pi)^{-np/2} \cdot \left|\frac{n-1}{n} \cdot S\right|^{-n/2} \cdot e^{-np/2}$$

We know

$$\Lambda = \frac{\max_{\mu} L(\mu, \Sigma_{0})}{\max_{\mu, \Sigma} L(\mu, \Sigma)}$$

$$= \frac{\prod_{i=1}^{p} (2\pi)^{-n/2} \cdot \left(\frac{n-1}{n} s_{ii}\right)^{-n/2} \cdot \exp(-n/2)}{(2\pi)^{-n/2} \left|\frac{n-1}{n} S\right|^{-n/2} \cdot \exp(-np/2)}$$

$$= \frac{|\mathbf{S}|^{n/2}}{\prod_{i=1}^{p} s_{ii}^{n/2}}$$

$$= |\mathbf{R}|^{n/2}$$
(8-28)

8-9(b): From 8-9(a) formula (1)

$$\max_{\boldsymbol{\mu}} L(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{\mathbf{0}}) = \prod_{i=1}^{p} (2\pi)^{-n/2} \cdot \sigma_{ii}^{-n/2} \cdot \exp\left(-\sum_{j=1}^{n} (x_{ji} - \mu_i)^2 \middle/ 2\sigma_{ii}\right)$$

Now under H_0 , all the $\sigma_{ii} = \sigma^2$ Hence

$$\max_{\mu} L(\mu, \Sigma_0) = (2\pi)^{-np/2} \cdot (\sigma^2)^{-np/2} \cdot \exp\left(-\sum_{j=1}^n \sum_{i=1}^p (x_{ji} - \mu_i)^2 \middle/ 2\sigma^2\right)$$

To find the maximum estimators $\hat{\mu}_i \& \hat{\sigma}^2$ take derivatives with respect to $\mu_i \& \sigma^2$ respectively and set them to 0 to find:

$$\hat{\mu}_i = \frac{1}{n} \sum_{j=1}^n x_{ji}$$
$$\hat{\sigma}^2 = \sum_{j=1}^n \sum_{i=1}^p (x_{ji} - \bar{x}_i)^2 / np$$
$$= \frac{n-1}{n} tr(\mathbf{S}) / p$$

Hence:

$$\begin{split} \Lambda &= \frac{\max_{\boldsymbol{\mu}} L(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{\mathbf{0}})}{\max_{\boldsymbol{\mu}, \boldsymbol{\Sigma}} L(\boldsymbol{\mu}, \boldsymbol{\Sigma})} \\ &= \frac{(2\pi)^{-np/2} (\hat{\sigma}^2)^{-np/2} \cdot \exp(-np/2)}{(2\pi)^{-np/2} \cdot |\hat{\boldsymbol{\Sigma}}|^{-n/2} \cdot \exp(-np/2)} \\ &= \frac{|\hat{\boldsymbol{\Sigma}}^{n/2}|}{(\hat{\sigma}^2)^{np/2}} = \frac{\left|\frac{n-1}{n} \cdot \mathbf{S}\right|^{n/2}}{\left(\frac{n-1}{n} tr(\mathbf{S})/p\right)^{np/2}} \\ &= \frac{|\mathbf{S}|^{n/2}}{(tr(\mathbf{S})/p)^{np/2}} = \left[\frac{\prod_{i=1}^{n} \hat{\lambda}_{i}}{\left(\frac{1}{p} \sum \hat{\lambda}_{i}\right)^{p}}\right]^{n/2} = \left(\frac{\text{geo mean } \hat{\lambda}_{i}}{\operatorname{ari mean } \hat{\lambda}_{i}}\right)^{np/2} \end{split}$$

9-5. Let **S** be a matrix with eigenvalue-eigenvector pairs $(\lambda_1, \mathbf{e}_1), (\lambda_2, \mathbf{e}_2), ..., (\lambda_p, \mathbf{e}_p)$, where $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_p$. Let m < p and define

$$\mathbf{L} = \{l_{ij}\} = \left[\sqrt{\lambda_1 \mathbf{e}_1} \mid \sqrt{\lambda_2 \mathbf{e}_2} \mid \dots \mid \sqrt{\lambda_m \mathbf{e}_m}\right]$$

and

$$\Psi = \begin{pmatrix} \psi_1 & 0 & \dots & 0 \\ 0 & \psi_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \psi_p \end{pmatrix} \text{ with } \psi_i = s_{ii} - \sum_{j=1}^m l_{ij}^2$$

Prove the inequality

Sum of squared entries of
$$(\mathbf{S} - (\mathbf{LL}' + \boldsymbol{\Psi})) \leq \lambda_{m+1}^2 + \dots + \lambda_p^2$$

Proof: By definition of ψ_i , we know that the diagonal of $(\mathbf{S} - (\mathbf{LL}' + \Psi))$ are all zeroes. Since $(\mathbf{S} - (\mathbf{LL}' + \Psi))$ and $(\mathbf{S} - \mathbf{LL}')$ have the same elements except on the diagonal, we know that

(Sum of squared entries of $(\mathbf{S} - (\mathbf{L}\mathbf{L}' + \Psi))) \leq$ Sum of squared entries of $(\mathbf{S} - \mathbf{L}\mathbf{L}')$

Since $\mathbf{S} = \lambda_1 \mathbf{e}_1 \mathbf{e}'_1 + \dots + \lambda_p \mathbf{e}_p \mathbf{e}'_p$ and $\mathbf{L}\mathbf{L}' = \lambda_1 \mathbf{e}_1 \mathbf{e}'_1 + \dots + \lambda_m \mathbf{e}_m \mathbf{e}'_m$, $\mathbf{S} - \mathbf{L}\mathbf{L}' = \lambda_{m+1} \mathbf{e}_{m+1} \mathbf{e}'_{m+1} + \dots + \lambda_p \mathbf{e}_p \mathbf{e}'_p$. Writing it in matrix form, this is saying $\mathbf{S} - \mathbf{L}\mathbf{L}' = \mathbf{P}_2 \mathbf{\Lambda}_2 \mathbf{P}'_2$ where $\mathbf{P}_2 = [\mathbf{e}_{m+1} | \dots | \mathbf{e}_p]$ and $\mathbf{\Lambda}_2 = Diag(\lambda_{m+1}, \dots, \lambda_p)$. Now

(Sum of squared entries of
$$\mathbf{S} - \mathbf{L}\mathbf{L}'$$
)
=tr(($\mathbf{S} - \mathbf{L}\mathbf{L}'$)($\mathbf{S} - \mathbf{L}\mathbf{L}'$)') (matrix calculation)
=tr(($\mathbf{P}_2 \mathbf{\Lambda}_2 \mathbf{P}'_2$)($\mathbf{P}_2 \mathbf{\Lambda}_2 \mathbf{P}'_2$)')
=tr($\mathbf{P}_2 \mathbf{\Lambda}_2 \mathbf{\Lambda}_2 \mathbf{P}'_2$) ($\mathbf{P}'_2 \mathbf{P}'_2 = \mathbf{I}$)
=tr($\mathbf{\Lambda}_2 \mathbf{\Lambda}_2$)
= $\lambda_{m+1}^2 + \dots + \lambda_p^2$.

and this completes the proof.